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Abstract

The neutral Higgs boson is expected to have a mass in the region 90-150

GeV/c2 in various schemes within the Minimal Supersymmetric extension to

the Standard Model. A �rst generation Muon Collider is uniquely suited

to investigate the mass, width and decay modes of the Higgs boson, since

the coupling of the Higgs to muons is expected to be strong enough for it

to be produced in the s channel mode in the muon collider. Due to the

narrow width of the Higgs, it is necessary to measure and control the energy

of the individual muon bunches to a precision of a few parts in a million. We

investigate the feasibility of determining the energy scale of a muon collider

ring with circulating muon beams of 50 GeV energy by measuring the turn

by turn variation of the energy deposited by electrons produced by the decay

of the muons. This variation is caused by the existence of an average initial

polarization of the muon beam and a non-zero value of g�2 for the muon. We

demonstrate that it is feasible to determine the energy scale of the machine
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with this method to a few parts per million using data collected during 1000

turns.

I. THE METHOD

The spin vector ~S of a muon in the muon collider will precess according to the following

equation, �rst derived by Bargmann, Michel and Telegdi [1]

d~S

dt
= ~
� ~S (1.1)

~
 = �
e

m�

0
@(1 + a) ~B? + (1 + a) ~Bk � (a +



1 + 
)~� �

~E

c

1
A (1.2)

where ~B? and ~Bk are the transverse and parallel components of the magnetic �eld with

respect to the muon's velocity ~�c, e is the electric charge, m� the mass of the muon, a � g�2
2

is the magnetic moment anomaly of the muon and  and g are the Lorentz factor and the

gyromagnetic ratio of the muon. The value of a � g�2
2

for the muon is 1.165924E-3 [2]. In

what follows, we will consider the ideal planar collider ring case where ~Bk and ~E are zero.

For such a collider ring, ~
 is given by

~
 = ~
cyc(1 + a) (1.3)

where ~
cyc is the angular velocity of the circulating beam. From this, it follows that when the

beam completes one turn, the spin will rotate by a further a�2� radians. We will compute

the precision with which  can be determined by measuring the energy of the electrons

produced by muon decay in this ideal case. We will examine the e�ects of departures from

the ideal case in the last section.

It can be shown that the angular distribution of the decay electrons in the muon center

of mass is given by the relation [3]

d2N

dxdcos�
= N(x2(3 � 2x)� P̂ x2(1 � 2x)cos�) (1.4)
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where N denotes the number of muon decays, x � 2E=m� is the electron energy E in the

muon rest frame expressed as a fraction of the maximum possible energy (� 0:5m�), cos�

is the angle of the electron in the muon rest frame with respect to the z axis which is the

direction of motion of the muon in the laboratory and P̂ is the product of the muon charge

and the z component of the muon polarization. The muon polarization is de�ned as the

average of the individual muon unit spin vectors over the ensemble of muons considered.

We note that the distribution is linear in P̂ .

A routine was written to generate muon decays according to equation 1.4. Figure 1 shows

the shape of the function in equation 1.4 and the generated events in x; cos� space for various

values of P̂ . There is excellent agreement between the theoretical shape of the function and

the Monte Carlo generated events. The average energy < E > and longitudinal momentum

< PL > of the electron in the muon rest frame can be obtained using equation 1.4 as follows.

< E >=
m�

2

Z Z
x

d2N

dxdcos�
dxdcos� =

7

10

m�

2
(1.5)

< PL >=
m�

2

Z Z
xcos�

d2N

dxdcos�
dxdcos� =

P̂

10

m�

2
(1.6)

These two quantities form the components of a 4-vector, whose transverse components are

zero, which may be transformed to the laboratory frame to yield the average electron energy

< Elab >.

< Elab >=
7

20
E�(1 +

�

7
P̂ ) (1.7)

where E� is the energy of the muon beam . Since the polarization P̂ precesses from turn to

turn by the amount ! = (g�2)=2�2� radians, and the number of muons decrease turn by

turn due to decay and losses, the total energy E(t) due to decay electrons observed during

turn t in an electromagnetic calorimeter will have the following expression

E(t) = Ne(��t)(
7

20
E�(1 +

�

7
(P̂ cos!t + �))) (1.8)

where N is the number of muon decays sampled in turn 0, � is an arbitrary phase containing

information on the initial direction of polarization and � is the turn by turn decay constant

of the muon intensity which in the absence of losses other than decay is given by
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FIG. 1. The top lego plots shows the generated events and the theoretical decay function in

the x; cos� plane for P̂ = -1.0. The lego plots at the bottom of the �gure show the corresponding

plots for P̂ = 1.0.
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FIG. 2. (a)Total energy observed as a function of turn number for P̂ = -1.0 with individual

electron energies in the range 0-10 GeV for 100,000muon decays. (b) Electron energies in the range

10-25 GeV (c) 25-50 GeV (d) All electrons included. Superimposed is a functional form de�ned by

equation 1.8
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� =
tcirc
tlife

(1.9)

where tcirc is the time taken to circulate around the storage ring and tlife is the muon life

time.

For a 100% polarized beam, the amplitude of the oscillations is only 1=7 that of the

non-oscillating background. It can be seen from equation 1.4 that the sensitivity to P̂ is

enhanced by selecting larger values of cos�. This implies selecting electrons with higher

laboratory energy. Figures 2(a-c) show the deposited electron energy as a function of turn

number for polarization P̂ = 1:0 for individual electron energy ranges of 0-10 GeV, 10-25

GeV and 25-50 GeV respectively as a function of turn number. Figure 2(b) shows very little

oscillatory signal, since the electrons in that energy range have small values of cos�. Figure

2(d) shows the deposited electron energy with no electron energy cuts. Superimposed is

the predicted behavior according equation 1.8. This serves as a consistency check for our

routines. The signal to background ratio increases as we demand electrons with higher

value of cos�. In what follows, we use electrons with energy greater than 25 GeV during

the investigative phase of this analysis and will later optimize this cut. In practice, we can

select electrons with energies above a value by momentum analyzing them with a dipole

�eld before they enter the calorimeter.

The method to determine the energy scale of the collider would then entail �tting a

functional form of the type

f(t) = Ae�Bt(Ccos(D + Et) + F ) (1.10)

to the energy observed in the calorimeter. The variables A;B;C;D;E;F are parameters to

be �tted. The information on the energy scale is contained in the parameter E.

A. Parameters of a 50 GeV idealized muon storage ring

In order to arrive at reasonable numbers for � and !, we consider a storage ring of 50

GeV muons with a uniform bending �eld of 4 Tesla. This would produce a circular ring
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Parameter Value Parameter Value

Muon Energy 50 GeV  473.22

spin precession in one turn 3.4667 radians Magnetic �eld 4.0 Tesla

radius of ring 41.66666 meters beam circulation time 0.87327E-06 sec

dilated muon life time 0.10397E-02 sec turn by turn decay constant 0.8399E-03

TABLE I. Parameters of an idealized muon storage ring

with the parameters given in table I. It should be noted that for an idealized storage ring

with constant B �eld considered here, � does not depend on , since

tcirc =
m�

0:3Bc
(1.11)

� =
2�m�

0:3Bctlife
(1.12)

where m� is the muon rest mass, B is the bending �eld of the storage ring and c is the

velocity of light. A 100 GeV collider ring will have the same � as a 50 GeV collider ring or a

25 GeV collider ring in this idealized case. As  changes slightly, tcirc changes in proportion,

� being the constant used to convert measurements of tcirc to . Measuring the decay rate

of muons also a�ords a second method to determine . The beam circulation time tcirc can

be measured to precisions of the order of a part in 106 and the fractional error in muon

lifetime is 1.82E-5 [2]. The fractional error in  obtainable by observing the rate of decay

of the muons will then be dominated by the precision that one can measure �, namely

�= = ��=�.

B. Generation of events and �tting for 

Since equation 1.4 is linear in P̂ , the decay distribution of an ensemble of muons depends

only on P̂ , the ensemble average of the z component of the individual muon spin vectors.

However, because of the momentum spread of the muons, each individual particle will have
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a  slightly di�erent from the average and hence the precession of the spin vector around the

ring will be di�erent, leading to a slightly di�erent value of P̂ for the next turn. We model

the beam by generating an ensemble of 100,000 muons each having its own spin vector and

momentum. In an actual collider, it will be possible to sample signi�cantly more decays than

this. During each turn, we decay all the beam particles once and record the number and

total energy deposited by electrons with individual energies above 25 GeV. Approximately

27% of the decay electrons pass this cut, on average. We decrease the number of decays by

the appropriate number expected by muon decay alone for the next turn. At this stage we

do not introduce uctuations in the number of decays from turn to turn, since the 100,000

muons are meant to be representative of a much larger number in the actual ring. We precess

the 100,000 spin vectors by their individual precession rates and make them decay again.

We repeat this for 1000 turns. We re-use the muons after each turn since the 100,000 muons

represent our model of the muon ensemble in the collider.

1. Generation of muon spin vectors

We generate 4 di�erent samples of events with di�erent ensembles of spin vectors. The z

component of the unit spin vector of a muon Sz is allowed to vary from -1 to 1. This range is

divided into 51 bins and the z components are generated using a binomial distribution whose

average value is speci�ed. We are justi�ed in treating this problem in this classical fashion,

since each \muon" represents an ensemble of actual muons with quantized spin components.

A more realistic generation of the spin vectors with correlations between momentum spread

and P̂ would require a detailed modelling of the pion decay and muon transport systems and

is not warranted here since the e�ect due to the distribution in Sz is expected to be small.

Figures 3 (a-d) show the distributions of Sz for the 4 samples. The average value of the

distributions are 0.9, 0.74, 0.5 and 0.26 respectively. We study negatively charged muons

resulting an initial value of P̂ of -0.9,-0.74,-0.5 and -0.26 respectively for these samples. In

the absence of momentum spread, the decay distributions would only depend on P̂ and not
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on the details of the distribution of Sz. The angles of the spin vectors are precessed by the

individual  dependent precession rate from turn to turn. In what follows, we assume a

beam energy spread of 0.03% for the muons for all samples unless otherwise speci�ed.

2. Fitting procedure and generation of errors

The energy deposited every turn is �tted to the functional form given by equation 1.10

using the CERN program MINUIT [4]. In order to study the variation of the fractional

error �= with the number of electrons sampled, we uctuate the energy observed in the

calorimeter Em by

�2
Em

< Em >2
�

1

N
(1:03153) (1.13)

where N is the number of electrons sampled. See Appendix for a derivation of this formula.

We analyze the case for 41261, 10315, 2579 and 1146 electrons sampled which corresponds

to a fractional error in the measured total energy of PERR �
�Em
Em

of .5E-2,1.0E-2,2.0E-2

and 3.0E-2 respectively.

II. RESULTS

We simulate the muon collider spin precession for a grid of values of P̂ =-0.9,-0.74,-0.5

and -0.26 and fractional measurement error for the �rst turn (PERR) of 0.5E-2, 1.0E-2,

2.0E-2 and 3.0E-2. Figure 4(a) shows the result of the MINUIT �t plotted for 50 turns for

P̂=-0.26 and PERR=0.5E-2. Figure 4(b) shows the same plot but with the function being

plotted only at integer values of the turn number t. A beat is evident in both the theoretical

curve and the simulated measurements as a result of sampling the oscillation function at �xed

intervals, not connected with the oscillation frequency. The origin of the beat is stroboscopic.

Figure 4(c) shows the pulls, de�ned as (data�fit)=error at each measurement as a function

of turn number for 1000 turns. There are no major turn dependent variations in this quantity

indicating that the �t converged satisfactorily. Figure 4(d) shows the histogram of the pulls,
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FIG. 3. (a)-(d) show the distribution of the z component of the spin vectors for the four samples

considered.
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which approximates a unit Gaussian as desired. Table II shows the results of the �t for the

grid of values of P̂ and PERR. The results presented in table II are shown graphically in

Figure 5. As an example, for an average polarization P̂ = -0.26, the fractional error in �=

varies from 5.1E-6 to 1.9E-5 as the fractional error in the electron energy sampled varies from

0.5E-2 to 3.0E-2, corresponding to the number of electrons sampled during the �rst turn

varying from 41261 to 1146. The average number of decays in the muon collider is expected

to be 3.2E6 decays per meter for a beam intensity of 1012 muons. The error in determining

 is thus going to be dominated by the uctuations in the number of electrons sampled turn

by turn, rather than sampling uctuations in the calorimeter. We have simulated conditions

involving � 40,000 decays. It should be possible to go to higher statistical precision than

computed here by sampling larger number of electrons.

The results for �= obtained from the measurement of the turn by turn rate of decay

of the electron energy are not competetive with the precession method primarily because

of the small value of � (0.8399E-3). This leads to larger fractional errors for  from this

method (which also assumes that the loss of intensity is entirely due to the decay process)

by almost three orders of magnitude than from the precession method.

A. Variation of �= as a function of muon energy

The spin precession per turn equals 2� for a  value of 857.689, which corresponds to a

muon beam momentum of 90.622 GeV/c. This is the �rst spin resonance for muons. At this

point, the �tting method loses sensitivity completely, since there will be no spin oscillations

turn by turn. We now study the error �= as a function of beam energy for P̂=-0.26 and

PERR=0.5E-2 (keeping the magnetic �eld in the idealized storage ring to be 4.0 Tesla)

as a function of muon beam energy that straddles the spin resonance. For initial muon

collider physics, the interesting beam energies are 45.5 GeV (half the Z mass), 80.3 GeV

(W threshold), 175 GeV (top threshold) as well as half the neutral Higgs mass, which could

be as low as 55 GeV in some SUSY scenarios. We sample all electrons that have energies
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P̂ PERR Number of electrons �=oscillations �=decay �2 for NDF=1000

sampled

-0.90 0.50E-02 41261 0.14568E-05 0.13227E-02 824.

-0.90 0.10E-01 10315 0.22147E-05 0.20124E-02 936.

-0.90 0.20E-01 2579 0.39999E-05 0.36398E-02 1009.

-0.90 0.30E-01 1146 0.58659E-05 0.53457E-02 1030.

-0.74 0.50E-02 41261 0.17418E-05 0.13019E-02 843.

-0.74 0.10E-01 10315 0.26183E-05 0.19591E-02 954.

-0.74 0.20E-01 2579 0.46981E-05 0.35229E-02 1021.

-0.74 0.30E-01 1146 0.68765E-05 0.51672E-02 1039.

-0.50 0.50E-02 41261 0.25903E-05 0.12813E-02 888.

-0.50 0.10E-01 10315 0.38407E-05 0.19029E-02 973.

-0.50 0.20E-01 2579 0.68338E-05 0.33972E-02 1026.

-0.50 0.30E-01 1146 0.99744E-05 0.49749E-02 1041.

-0.26 0.50E-02 41261 0.51242E-05 0.12688E-02 898.

-0.26 0.10E-01 10315 0.75317E-05 0.18791E-02 1004.

-0.26 0.20E-01 2579 0.13324E-04 0.33447E-02 1053.

-0.26 0.30E-01 1146 0.19380E-04 0.48950E-02 1061.

TABLE II. Results of �ts for �= as a function of polarization P̂ and noise PERR. Also shown

is the �2 of the �t for 1000 turns.
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greater than half the muon energy. Figure 6 shows the variation of �= as a function of

muon beam energies that straddle these values. It can be seen that �= �rst decreases as

one gets close to the resonance and then blows up on the spin resonance. Figures (7-11)

show the �tted solutions superimposed on the simulated data for various momenta. Also

shown side by side is the simulated data by itself. As one approaches the spin resonance,

the oscillations slow down. It is nevertheless possible to �t the slowed down oscillations by

a rapidly oscillating theoretical function to high accuracy on either side of the resonance.

At the resonance, the oscillations die completely, which results in a large value of �=.

It may be possible to use this blow-up in �= to �nd the spin resonance accurately and

(paradoxically) determine  at resonance accurately. This would depend on the width of

the spin resonance, an analysis of which would take us beyond the scope of this paper.

B. Variation of �= as a function of beam energy spread

We now calculate the variation of polarization as a function of turn number for an

ensemble of muons with initial value of polarization P̂ = -0.26 and values of momentum

spread �p=p varying from 0.02E-2 to 0.00125E-2. This variation is plotted in �gure 13. For

the larger values of momentum spread, there is a signi�cant degradation of polarization as a

function of turn number, due to di�erential spin precession of the individual beam particles.

We note that when the beam energy is at 175 GeV, the spin tune is signi�cantly higher and

the depolarization is more rapid. Despite this depolarization, there is enough information

from the �rst few hundred turns to extract the excellent value of �= for 175 GeV beam

energy as shown in �gure 6.

Figure 14 shows the variation of the fractional energy resolution, �= as a function

of fractional beam energy spread for a muon beam with P̂ = -0.26, with 41261 electrons

sampled. There is little dependence of �= on the momentum spread. This is due to the

fact that the momentum spread is determined from the spin tune and not from the spin

oscillation amplitude and the fact that the depolarization is not signi�cant for the �rst few
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hundred turns for any of the beam momentum spreads considered here.

C. Optimization of the electron energy cut

We now vary the cut on electron energy and study the dependence on �= on the cut.

Figure 15 shows the variation of �= with the cut on individual electron energies for P̂

= -0.26 for 41261 and 1146 electrons sampled. As shown in the Appendix, the fractional

error on the average energy of electrons is much smaller than the fractional error on the

total energy of electrons. It is possible to measure the average electron energy by counting

the number of electrons going into the calorimeter with a scintillator array. However, the

precession information is contained increasingly in the number of electrons rather than their

average energy as we increase the electron energy cut. Figure 15 shows the variation of �=

calculated from average as well as total electron energy as a function of the electron energy

cut. For smaller values of the electron energy cut, the average method produces superior

errors than the total energy method. However, with 40,000 electrons or more sampled a total

energy method with a cut of 25 GeV or higher seems optimal. It should however be pointed

out that the average energy method does not require a model for the rate of decay of muon

intensity in the machine, which in practice could be a complicated function of turn number.

As such the systematics associated with this would not be present in the average energy

method. Figure 16(a) shows the variation of the absolute value of C=F as a function of the

electron energy cuto� for P̂ = -0.26, where C and F are de�ned in equation 1.10 for both

the total energy method and the average energy method. Figure 16(b) shows the fraction

of electrons that lie above the electron energy cut as a function of the energy cut. The

polarization for this sample is 0, since the electron energy fraction depends on polarization

as well. Given the curves shown in �gure 16, it should be possible to estimate the error in

�= for a variety of conditions.
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III. EFFECTS DUE TO DEPARTURES FROM THE IDEAL CASE

So far we have considered a planar collider ring with uniform vertical magnetic �eld and

no electric �elds. The actual collider ring will depart from the ideal in three respects; a)It

will have RF electric �elds to keep the muons bunched, b) it will have radial horizontal

magnetic �elds experienced by partcles in an o�-center trajectory at quadrupoles and at

vertical correction dipoles, and c) it will have longitudinal magnetic �elds due to solenoidal

magnets in the interaction region(s). We now consider the e�ect due to each of these

departures from the ideal.

A. Electric �elds

Equation 1.2 implies that there is no spin precession due to longitudinal electric �elds

(~�� ~E = 0). RF electric �elds are longitudinal, so there will be no precession due to the RF

electric �elds. At present there are no plans to install electrostatic separators to separate

the beams. If and when this happens, one should consider the e�ect due to the transverse

electric �elds thus introduced.

B. E�ect of radial magnetic �elds

Particles which are o�-axis at quadrupoles will experience radial as well as vertical mag-

netic �elds. Even though the net integral of these o�-axis �elds around the ring is zero, the

spin rotation along a horizontal axis followed by spin rotation about a vertical axis (caused

by a bend dipole) followed by a reverse rotation in the horizontal direction still produces a

net e�ect since the rotations about the horizontal and vertical axes do not commute. The

e�ects have been analyzed by Assmann and Koutchouk [5] who show that this results in

both a net spin tune shift < �� > as well as a spread in tune ���.

< �� >=
cot��0
8�

�20
�
nQ(KlQ)

2�2
y + nCV �

2
�CV

�
(3.1)
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where �0 � a is the spin tune of the collider ring, nQ are the number of quadrupoles

with integrated gradient KlQ, �y is the misalignment spread of the closed orbit at the

quadrupoles, nCV is the number of vertical correction dipoles and ��CV is the rms beand

angle in the vertical correctors. The spread in tune is given by,

��� =
< �� >

cos��0
(3.2)

Table III shows the values for < �� > and ��� obtained by Assman and Koutchuk [5] for

LEP. We compare this with to the current design for the 50 GeV muon collider ring [6].

Including the low beta section, there are 70 quadrupoles with an RMS value of KlQ = 0.27

m�1. The e�ects due to correction dipoles may be neglected in both the LEP and the muon

collider cases. We assume a beam misalignment of 5mm at the quadrupoles, which is the

same value used in the LEP calculation. This is probably being conservative. The tune shift

for LEP corresponds to a shift in beam energy calibration of 3.0 KeV. The tune spread for

LEP corresponds to a spread in beam energy calibration of 30 KeV. For the muon collider,

the tune shift corresponds to a shift in beam energy calibration of -0.24 KeV and a spread

of 1.46 KeV, both of which are negligible. The reason for the smallness of this e�ect for the

muon collider is twofold. Since the circumference of the muon collider is smaller than LEP,

there are fewer quadrupoles. Secondly, the muon is two hundred times more massive than

the electron and has has a spin tune a that is smaller by the same factor. The spin tune

shift depends on the the square of the spin tune. It should be noted that the above formulae

are not valid for a fractional spin tune of 0.5.

C. Solenoidal magnetic �elds

The experimental region will in all likelihood contain a solenoidal magnet. This solenoidal

�eld, if uncorrected, will rotate the spin vector of the muons about the beam direction by a

constant amount �s per turn, which can be derived using equation 1.2.

�s = �
e

m�
(1 + a)Bs = �(1 + a)

Bsl

B�
(3.3)
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where Bs is the �eld due to the solenoid of length l, B is the dipole bending �eld of the ring

of radius �. For a solenoid of 1.5 Tesla and length 6 meters, �s = 3.09 degrees for the planar

storage ring parameters of table I. It can be shown analytically [8] that this produces a spin

tune shift �� given by

� + �� =
1

�
arccos

 
cos(��)cos(

�

2
)

!
(3.4)

yielding a spin tune shift �� = -1.901E-5, or a fractional spin tune shift of ��=� = -3.45E-5.

For a 50 GeV muon beam, this is a shift in energy calibration of -1.72 MeV. In LEP, a

similar solenoid will have a much smaller fractional tune shift [8], since the tune is 200 times

larger for electrons. It is important to correct the e�ect due to the solenoids, since this is

cumulative turn by turn. At LEP this is done by a series of vertical orbit correctors [9]

followed by normal lattice followed by vertical orbit correctors of reverse polarity, which has

the e�ect of rotating the spin by half the amount produced by the solenoid. A similar set of

corrections is inserted after the solenoid to complete the correction. This method depends

on a non-zero value of g � 2 and as such will be 200 times less e�ective for muons than

for electrons, for any given magnet strength. The most e�ective method to correct for the

solenoid is to surround it on either side by compensating solenoids of minimal radius large

enough to allow the beam to go through.

IV. CONCLUSIONS

We have demonstrated that it is feasible to measure the energy of a 50 GeV muon

collider to a few parts per million using the g � 2 spin precession technique, provided it is

feasible to maintain a muon polarization of the order of P̂=0.25 in the ring for a thousand

turns. In order to explore the Higgs resonance, it is necessary to measure the bunch by

bunch variation in energy to a few parts per million. We have demonstrated that the g � 2

technique is capable of doing so. It is still possible to tolerate a spin tune shift in the overall

energy scale of a few percent, which will act only as a systematic error on the Higgs mass

and width.
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We would also like to note in passing that polarization information from a calorimeter

of the type proposed here can be used in conjunction with a neutrino detector placed along

the line of the neutrinos produced in association with the electrons to estimate the variation

in the energy spectrum of the muon neutrinos and electron antineutrinos in the beam.

Such information can be a valuable tool in untangling various possible neutrino oscillation

scenarios.

We intend to develop the method here by studying the propagation of polarized muons

in a realistic 50 GeV collider lattice using the program COSY [7] that takes into account

non-linear e�ects in the dynamic aperture. Design and Monte Carlo studies will also be

undertaken to develop the calorimeter detector needed. The authors would like to acknowl-

edge useful conversations with Alain Blondel, Yaroslav Derbenev and Robert Rossmanith.
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FIG. 4. (a)Energy detected in the calorimeter during the �rst 50 turns in a 50 GeV muon

storage ring (points). An average value of P̂=-0.26 is assumed and a fractional uctuation of

0.5E-2 per point. The curve is the result of a MINUIT �t to the functional form in equation 1.10.

(b) The same �t, with the function being plotted only at integer turn values. A beat is evident.

(c) Pulls as a function of turn number (d)Histogram of pulls.
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FIG. 5. (a)Fractional error in �= obtained from the oscillations as a function of polarization

P̂ and the fractional error in the measurements PERR (b) Fractional error in �= obtained from

the decay term as a function of polarization P̂ and the fractional error in the measurements PERR

(c) The total �2 of the �ts for 1000 degrees of freedom
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FIG. 6. Fractional error in �= obtained from the oscillations as a function of muon beam

momentum
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FIG. 7. The �gures on the left hand side show the simulated data with the �tted function

superimposed for 50 turns. The �gures on the right hand side show the simulated data and the

�tted function at integer values of the turn number. The data shown are 60 GeV/c and 70 GeV/c

muon momenta respectively.
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FIG. 8. The �gures on the left hand side show the simulated data with the �tted function

superimposed for 50 turns. The �gures on the right hand side show the simulated data and the

�tted function at integer values of the turn number. The data shown are 80 GeV/c and 90 GeV/c

muon momenta respectively.
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FIG. 9. The �gures on the left hand side show the simulated data with the �tted function

superimposed for 50 turns. The �gures on the right hand side show the simulated data and the

�tted function at integer values of the turn number. The data shown are 90.622 GeV/c and 91.2

GeV/c muon momenta respectively. The upper curve is on resonance.
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FIG. 10. The �gures on the left hand side show the simulated data with the �tted function

superimposed for 50 turns. The �gures on the right hand side show the simulated data and the

�tted function at integer values of the turn number. The data shown are 100 GeV/c and 110

GeV/c muon momenta respectively.
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FIG. 11. The �gures on the left hand side show the simulated data with the �tted function

superimposed for 50 turns. The �gures on the right hand side show the simulated data and the

�tted function at integer values of the turn number. The data shown are 120 GeV/c and 130

GeV/c muon momenta respectively.
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FIG. 12. The �gures on the left hand side show the simulated data with the �tted function

superimposed for 50 turns. The �gures on the right hand side show the simulated data and the �tted

function at integer values of the turn number. The data shown are 175 GeV/c muon momentum.
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FIG. 13. Variation of polarization as a function of turn number for 50 GeV muons with initial

P̂ =-0.26 and various values of �p=p in an ideal collider ring. The bottom curve is for 175 GeV

muons and shows a more rapid depolarization due to the higher spin tune.
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FIG. 14. �= versus fractional beam energy spread for 50 GeV muons with PERR=.5E-2 and

P̂ =-0.26
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FIG. 15. The variation of �= as a function of the electron energy cut for 41261 and 1146

electrons P̂ =-0.26. We �t the total energy in the calorimeter as well as the average energy per

electron
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FIG. 16. (a) The variation of C=F as a function of the electron energy cut for P̂ =-0.26 for

total energy method and average energy method. (b) The fraction of electrons that survive the

energy cut as a function of the cut for P̂ = 0.
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V. APPENDIX

A. Treatment of Errors

We measure the total energy E of all electrons with individual energy e > 25 GeV in an

electromagnetic calorimeter. Let N be the number of electrons sampled during a turn. N

can uctuate from sampling to sampling. Then

E =
NX
i=1

ei = N < e > (5.1)

�2
E

< E >2
=

�2
N

< N >2
+

�2
<e>

< e >2
=

1

< N >
(1 +

�2
e

< e >2
) (5.2)

where the variance �2 of the quantities e and E results from the kinematic distributions

of those quantities and not from the measurement errors. The average of the individual

electron energies is denoted by < e >.

Let the calorimeter be such that it measures the true deposited energy E with a resolution

�(E) such that

�2

E2
= C2 +

S2

E
+
N 2

E2
(5.3)

where C;S and N represent the Constant, Sampling and Noise terms respectively. Let us

assume that the measurement errors are Gaussian. Then,

P (Em) =
Z
P (E)G(E;Em; �)dE (5.4)

where Em is the measured energy and G(E,Em; �) is a Gaussian of mean E and standard

deviation �, which is a function of E and is written as �(E). From this it follows that the

mean measured energy < Em > and the mean squared measured energy < E2
m > are given

by

< Em >=
R
EmP (Em)dEm =

R
EmdEm

R
P (E)G(E;Em; �)dE

=
R
P (E)dE

R
EmG(E;Em; �)dEm =

R
P (E)dE � E =< E >

(5.5)

The equation 5.5 states that the mean value of any distribution given by P (E) is the same

as that of the smeared distribution P (Em) provided the smearing function is such that
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the average of the smeared values for any given true value E equals the true value ( a

property satis�ed by Gaussians) and the integration is carried over the full range of the

variables. As an aside, in High Energy Physics, we measure steeply falling spectra that are

smeared by measurement errors. Provided there is no arbitrary lower cut-o� in the measured

spectra (such as a trigger threshold), the above result would be valid, even for non-Gaussian

resolutions. For the muon collider, the cut o� in selected electrons of 25 GeV is imposed by

momentum selection that is independent of the calorimetry. So the above result would still

be valid. Similarly, one can compute < E2
m >

< E2
m >=

R
E2
mP (Em)dEm =

R
E2
mdEm

R
P (E)G(E;Em; �)dE

=
R
P (E)dE

R
E2
mG(E;Em; �)dEm =

R
P (E)dE � (E2 + �2) =< E2 > +

R
P (E)�2(E)dE

(5.6)

From this it follows that the variance of the measured energy �2
Em is given by

�2
Em

= �2
E +

Z
P (E)�2(E)dE � �2

E + �2(< E >) (5.7)

where the last approximation results from assigning the average measurement resolution to

the resolution at the average energy. This then leads to

�2
Em

< Em >2
�

�2
E

< E >2
+
�2(< E >)

< E >2
(5.8)

Using equation 5.2 and 5.3 leads to

�2
Em

< Em >2
�

1

N
(1 +

�2
e

< e >2
) + C2 +

S2

N < e >
+

N 2

N2 < e >2
(5.9)

From the above equation, it is obvious that the calorimeter must be such that the constant

term C must be negligible for the fractional resolution to scale inversely with the number N

of electrons collected. The noise term can be neglected for large enough N since it goes as

N�2. With these assumptions, one gets

�2
Em

< Em >2
�

1

N
(1 +

�2
e

< e >2
+

S2

< e >
) (5.10)

For a 50 GeV muon beam, the values of < e > and �e are 34.05 GeV and 6.046 GeV

respectively for electrons with e > 25 GeV. The ratio, �e= < e > is to a good approximation

independent of muon energy. This then leads to the following error formula.
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�2
Em

< Em >2
�

1

N
(1 + 0:03153 +

S2

34:05
) (5.11)

Sampling terms of 0.15 GeV1=2 or better are easy to obtain in electromagnetic calorimeters.

This leads to

�2
Em

< Em >2
�

1

N
(1 + 0:03153 + 0:000661) (5.12)

i.e. the sampling term can be neglected when compared to the uctuation in the true

electron energies. So if the fractional measurement error is PERR �
�Em
<Em>

is speci�ed, the

equivalent number of electrons is given by

N �
1:03153

(PERR2)
(5.13)

In other words, PERR=.5E-2,1.0E-2,2.0E-2 and 3.0E-2 implies 41261, 10315, 2579, and

1146 electrons sampled. If in practice we sample 100,000 electrons, this leads to a value of

PERR=0.3212E-2. In order for this good a resolution to be meaningful, the constant term

C has to be below this order of magnitude.

B. Using averages

Equation 5.2 holds for the total energy E in the calorimeter. If however, one also

measures the total number of particles entering the calorimeter (using a scintillator system

for example, that counts minimum ionizing particles), then for each turn one can measure

the average energy Eav of electrons. The fractional error on Eav does not contain a term

due to the uctuation of the number of electrons entering the calorimeter, being given by

�2
Eav

< Eav >2
=

�2
<e>

< e >2
=

1

< N >
(

�2
e

< e >2
) (5.14)

with < Eav >=< e >. For a fractional error of PERR in Eav, the equivalent number of

electrons sampled would be given by

N �
0:03153

(PERR2)
(5.15)

34



With this method, PERR=.5E-2,1.0E-2,2.0E-2 and 3.0E-2 implies 1261, 315, 79, and 35

electrons sampled, assuming no error in the measurement of N. If we sample 100,000 elec-

trons, the fractional error in the average would be 0.561E-3. For this error to be meaningful,

the sampling term would have to be of this order of magnitude.
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Machine Spin tune �0 Quadrupoles RMS KlQ �y �� ���

meters�1 meters

46 GeV LEP 100.47 � 600 0.032 0.5E-3 5.7E-6 6.1E-5

� 3KeV � 30KeV

50 GeV Muon Collider 0.5517 70 0.274 0.5E-3 -0.26E-8 1.66E-8

� -0.24KeV � 1.46KeV

TABLE III. Predictions for spin tune shift �� and spread in spin tune shift ��� caused by

quadrupoles for LEP compared to the 50 GeV muon collider ring

37


